skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Koren, Gerbrand"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract This paper summarizes the open community conventions developed by the Ecological Forecasting Initiative (EFI) for the common formatting and archiving of ecological forecasts and the metadata associated with these forecasts. Such open standards are intended to promote interoperability and facilitate forecast communication, distribution, validation, and synthesis. For output files, we first describe the convention conceptually in terms of global attributes, forecast dimensions, forecasted variables, and ancillary indicator variables. We then illustrate the application of this convention to the two file formats that are currently preferred by the EFI, netCDF (network common data form), and comma‐separated values (CSV), but note that the convention is extensible to future formats. For metadata, EFI's convention identifies a subset of conventional metadata variables that are required (e.g., temporal resolution and output variables) but focuses on developing a framework for storing information about forecast uncertainty propagation, data assimilation, and model complexity, which aims to facilitate cross‐forecast synthesis. The initial application of this convention expands upon the Ecological Metadata Language (EML), a commonly used metadata standard in ecology. To facilitate community adoption, we also provide a Github repository containing a metadata validator tool and several vignettes in R and Python on how to both write and read in the EFI standard. Lastly, we provide guidance on forecast archiving, making an important distinction between short‐term dissemination and long‐term forecast archiving, while also touching on the archiving of code and workflows. Overall, the EFI convention is a living document that can continue to evolve over time through an open community process. 
    more » « less
  2. Working with ecological data often involves ethical considerations, particularly when data are applied to address societal needs. However, data science ethics are rarely included as part of undergraduate and graduate training programs. Here, we present four modules for teaching ethics in data science, with real-world case studies related to ecological forecasting. 
    more » « less
  3. Abstract Although Artificial Intelligence (AI) projects are common and desired by many institutions and research teams, there are still relatively few success stories of AI in practical use for the Earth science community. Many AI practitioners in Earth science are trapped in the prototyping stage and their results have not yet been adopted by users. Many scientists are still hesitating to use AI in their research routine. This paper aims to capture the landscape of AI-powered geospatial data sciences by discussing the current and upcoming needs of the Earth and environmental community, such as what practical AI should look like, how to realize practical AI based on the current technical and data restrictions, and the expected outcome of AI projects and their long-term benefits and problems. This paper also discusses unavoidable changes in the near future concerning AI, such as the fast evolution of AI foundation models and AI laws, and how the Earth and environmental community should adapt to these changes. This paper provides an important reference to the geospatial data science community to adjust their research road maps, find best practices, boost the FAIRness (Findable, Accessible, Interoperable, and Reusable) aspects of AI research, and reasonably allocate human and computational resources to increase the practicality and efficiency of Earth AI research. 
    more » « less
  4. Abstract Models have become a key component of scientific hypothesis testing and climate and sustainability planning, as enabled by increased data availability and computing power. As a result, understanding how the perceived ‘complexity’ of a model corresponds to its accuracy and predictive power has become a prevalent research topic. However, a wide variety of definitions of model complexity have been proposed and used, leading to an imprecise understanding of what model complexity is and its consequences across research studies, study systems, and disciplines. Here, we propose a more explicit definition of model complexity, incorporating four facets—model class, model inputs, model parameters, and computational complexity—which are modulated by the complexity of the real‐world process being modelled. We illustrate these facets with several examples drawn from ecological literature. Overall, we argue that precise terminology and metrics of model complexity (e.g., number of parameters, number of inputs) may be necessary to characterize the emergent outcomes of complexity, including model comparison, model performance, model transferability and decision support. 
    more » « less
  5. Summary A new proliferation of optical instruments that can be attached to towers over or within ecosystems, or ‘proximal’ remote sensing, enables a comprehensive characterization of terrestrial ecosystem structure, function, and fluxes of energy, water, and carbon. Proximal remote sensing can bridge the gap between individual plants, site‐level eddy‐covariance fluxes, and airborne and spaceborne remote sensing by providing continuous data at a high‐spatiotemporal resolution. Here, we review recent advances in proximal remote sensing for improving our mechanistic understanding of plant and ecosystem processes, model development, and validation of current and upcoming satellite missions. We provide current best practices for data availability and metadata for proximal remote sensing: spectral reflectance, solar‐induced fluorescence, thermal infrared radiation, microwave backscatter, and LiDAR. Our paper outlines the steps necessary for making these data streams more widespread, accessible, interoperable, and information‐rich, enabling us to address key ecological questions unanswerable from space‐based observations alone and, ultimately, to demonstrate the feasibility of these technologies to address critical questions in local and global ecology. 
    more » « less
  6. Abstract Ecological forecasting provides a powerful set of methods for predicting short‐ and long‐term change in living systems. Forecasts are now widely produced, enabling proactive management for many applied ecological problems. However, despite numerous calls for an increased emphasis on prediction in ecology, the potential for forecasting to accelerate ecological theory development remains underrealized.Here, we provide a conceptual framework describing how ecological forecasts can energize and advance ecological theory. We emphasize the many opportunities for future progress in this area through increased forecast development, comparison and synthesis.Our framework describes how a forecasting approach can shed new light on existing ecological theories while also allowing researchers to address novel questions. Through rigorous and repeated testing of hypotheses, forecasting can help to refine theories and understand their generality across systems. Meanwhile, synthesizing across forecasts allows for the development of novel theory about the relative predictability of ecological variables across forecast horizons and scales.We envision a future where forecasting is integrated as part of the toolset used in fundamental ecology. By outlining the relevance of forecasting methods to ecological theory, we aim to decrease barriers to entry and broaden the community of researchers using forecasting for fundamental ecological insight. 
    more » « less